Copied to
clipboard

G = C28.8C42order 448 = 26·7

1st non-split extension by C28 of C42 acting via C42/C2×C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C28.8C42, C426Dic7, C14.7C4≀C2, (C4×C28)⋊12C4, C4⋊Dic75C4, C4.Dic71C4, C28.27(C4⋊C4), (C2×C28).58Q8, C4.8(C4×Dic7), (C2×C42).7D7, C71(C426C4), (C2×C28).478D4, (C2×C4).162D28, C4.44(D14⋊C4), C4.20(C4⋊Dic7), (C2×C4).42Dic14, C2.3(Dic14⋊C4), C28.59(C22⋊C4), C4.22(Dic7⋊C4), (C22×C14).176D4, (C22×C4).412D14, C23.72(C7⋊D4), C22.36(D14⋊C4), C22.8(C23.D7), C14.1(C2.C42), C2.3(C14.C42), C22.12(Dic7⋊C4), (C22×C28).532C22, C23.21D14.1C2, (C2×C4×C28).15C2, (C2×C4).98(C4×D7), (C2×C14).33(C4⋊C4), (C2×C28).217(C2×C4), (C2×C4).71(C2×Dic7), (C2×C4.Dic7).1C2, (C2×C4).231(C7⋊D4), (C2×C14).49(C22⋊C4), SmallGroup(448,80)

Series: Derived Chief Lower central Upper central

C1C28 — C28.8C42
C1C7C14C2×C14C22×C14C22×C28C23.21D14 — C28.8C42
C7C14C28 — C28.8C42
C1C2×C4C22×C4C2×C42

Generators and relations for C28.8C42
 G = < a,b,c | a28=b4=c4=1, bab-1=a-1, ac=ca, cbc-1=a7b >

Subgroups: 356 in 110 conjugacy classes, 51 normal (39 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, C23, C14, C14, C14, C42, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, Dic7, C28, C28, C2×C14, C2×C14, C2×C42, C42⋊C2, C2×M4(2), C7⋊C8, C2×Dic7, C2×C28, C2×C28, C22×C14, C426C4, C2×C7⋊C8, C4.Dic7, C4.Dic7, C4×Dic7, C4⋊Dic7, C23.D7, C4×C28, C4×C28, C22×C28, C22×C28, C2×C4.Dic7, C23.21D14, C2×C4×C28, C28.8C42
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, D7, C42, C22⋊C4, C4⋊C4, Dic7, D14, C2.C42, C4≀C2, Dic14, C4×D7, D28, C2×Dic7, C7⋊D4, C426C4, C4×Dic7, Dic7⋊C4, C4⋊Dic7, D14⋊C4, C23.D7, Dic14⋊C4, C14.C42, C28.8C42

Smallest permutation representation of C28.8C42
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 103 34 68)(2 102 35 67)(3 101 36 66)(4 100 37 65)(5 99 38 64)(6 98 39 63)(7 97 40 62)(8 96 41 61)(9 95 42 60)(10 94 43 59)(11 93 44 58)(12 92 45 57)(13 91 46 84)(14 90 47 83)(15 89 48 82)(16 88 49 81)(17 87 50 80)(18 86 51 79)(19 85 52 78)(20 112 53 77)(21 111 54 76)(22 110 55 75)(23 109 56 74)(24 108 29 73)(25 107 30 72)(26 106 31 71)(27 105 32 70)(28 104 33 69)
(1 48)(2 49)(3 50)(4 51)(5 52)(6 53)(7 54)(8 55)(9 56)(10 29)(11 30)(12 31)(13 32)(14 33)(15 34)(16 35)(17 36)(18 37)(19 38)(20 39)(21 40)(22 41)(23 42)(24 43)(25 44)(26 45)(27 46)(28 47)(57 85 71 99)(58 86 72 100)(59 87 73 101)(60 88 74 102)(61 89 75 103)(62 90 76 104)(63 91 77 105)(64 92 78 106)(65 93 79 107)(66 94 80 108)(67 95 81 109)(68 96 82 110)(69 97 83 111)(70 98 84 112)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,103,34,68)(2,102,35,67)(3,101,36,66)(4,100,37,65)(5,99,38,64)(6,98,39,63)(7,97,40,62)(8,96,41,61)(9,95,42,60)(10,94,43,59)(11,93,44,58)(12,92,45,57)(13,91,46,84)(14,90,47,83)(15,89,48,82)(16,88,49,81)(17,87,50,80)(18,86,51,79)(19,85,52,78)(20,112,53,77)(21,111,54,76)(22,110,55,75)(23,109,56,74)(24,108,29,73)(25,107,30,72)(26,106,31,71)(27,105,32,70)(28,104,33,69), (1,48)(2,49)(3,50)(4,51)(5,52)(6,53)(7,54)(8,55)(9,56)(10,29)(11,30)(12,31)(13,32)(14,33)(15,34)(16,35)(17,36)(18,37)(19,38)(20,39)(21,40)(22,41)(23,42)(24,43)(25,44)(26,45)(27,46)(28,47)(57,85,71,99)(58,86,72,100)(59,87,73,101)(60,88,74,102)(61,89,75,103)(62,90,76,104)(63,91,77,105)(64,92,78,106)(65,93,79,107)(66,94,80,108)(67,95,81,109)(68,96,82,110)(69,97,83,111)(70,98,84,112)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,103,34,68)(2,102,35,67)(3,101,36,66)(4,100,37,65)(5,99,38,64)(6,98,39,63)(7,97,40,62)(8,96,41,61)(9,95,42,60)(10,94,43,59)(11,93,44,58)(12,92,45,57)(13,91,46,84)(14,90,47,83)(15,89,48,82)(16,88,49,81)(17,87,50,80)(18,86,51,79)(19,85,52,78)(20,112,53,77)(21,111,54,76)(22,110,55,75)(23,109,56,74)(24,108,29,73)(25,107,30,72)(26,106,31,71)(27,105,32,70)(28,104,33,69), (1,48)(2,49)(3,50)(4,51)(5,52)(6,53)(7,54)(8,55)(9,56)(10,29)(11,30)(12,31)(13,32)(14,33)(15,34)(16,35)(17,36)(18,37)(19,38)(20,39)(21,40)(22,41)(23,42)(24,43)(25,44)(26,45)(27,46)(28,47)(57,85,71,99)(58,86,72,100)(59,87,73,101)(60,88,74,102)(61,89,75,103)(62,90,76,104)(63,91,77,105)(64,92,78,106)(65,93,79,107)(66,94,80,108)(67,95,81,109)(68,96,82,110)(69,97,83,111)(70,98,84,112) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,103,34,68),(2,102,35,67),(3,101,36,66),(4,100,37,65),(5,99,38,64),(6,98,39,63),(7,97,40,62),(8,96,41,61),(9,95,42,60),(10,94,43,59),(11,93,44,58),(12,92,45,57),(13,91,46,84),(14,90,47,83),(15,89,48,82),(16,88,49,81),(17,87,50,80),(18,86,51,79),(19,85,52,78),(20,112,53,77),(21,111,54,76),(22,110,55,75),(23,109,56,74),(24,108,29,73),(25,107,30,72),(26,106,31,71),(27,105,32,70),(28,104,33,69)], [(1,48),(2,49),(3,50),(4,51),(5,52),(6,53),(7,54),(8,55),(9,56),(10,29),(11,30),(12,31),(13,32),(14,33),(15,34),(16,35),(17,36),(18,37),(19,38),(20,39),(21,40),(22,41),(23,42),(24,43),(25,44),(26,45),(27,46),(28,47),(57,85,71,99),(58,86,72,100),(59,87,73,101),(60,88,74,102),(61,89,75,103),(62,90,76,104),(63,91,77,105),(64,92,78,106),(65,93,79,107),(66,94,80,108),(67,95,81,109),(68,96,82,110),(69,97,83,111),(70,98,84,112)]])

124 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E···4N4O4P4Q4R7A7B7C8A8B8C8D14A···14U28A···28BT
order12222244444···44444777888814···1428···28
size11112211112···228282828222282828282···22···2

124 irreducible representations

dim11111112222222222222
type+++++-++-+-+
imageC1C2C2C2C4C4C4D4Q8D4D7Dic7D14C4≀C2Dic14C4×D7D28C7⋊D4C7⋊D4Dic14⋊C4
kernelC28.8C42C2×C4.Dic7C23.21D14C2×C4×C28C4.Dic7C4⋊Dic7C4×C28C2×C28C2×C28C22×C14C2×C42C42C22×C4C14C2×C4C2×C4C2×C4C2×C4C23C2
# reps1111444211363861266648

Matrix representation of C28.8C42 in GL4(𝔽113) generated by

98000
661500
00640
00083
,
994500
811400
0001
001120
,
1000
109800
001120
0001
G:=sub<GL(4,GF(113))| [98,66,0,0,0,15,0,0,0,0,64,0,0,0,0,83],[99,81,0,0,45,14,0,0,0,0,0,112,0,0,1,0],[1,10,0,0,0,98,0,0,0,0,112,0,0,0,0,1] >;

C28.8C42 in GAP, Magma, Sage, TeX

C_{28}._8C_4^2
% in TeX

G:=Group("C28.8C4^2");
// GroupNames label

G:=SmallGroup(448,80);
// by ID

G=gap.SmallGroup(448,80);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,28,253,64,1123,1684,102,18822]);
// Polycyclic

G:=Group<a,b,c|a^28=b^4=c^4=1,b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=a^7*b>;
// generators/relations

׿
×
𝔽